티스토리 뷰
#include <iostream>
#include <opencv2/highgui.hpp>
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
using namespace std;
using namespace cv;
class myLaplacian {
private:
// laplacian
Mat laplace;
// size of the laplacian kernel
int kernelSize;
public:
myLaplacian() : kernelSize(3) {}
// Set size of the kernel
void setKernelSize(int inputAperture) {
kernelSize = inputAperture;
}
// computer the floating point Laplacian
Mat computeLaplacian(const Mat& inputImage) {
// Compute Laplacian
Laplacian(inputImage, laplace, CV_32F, kernelSize);
return laplace;
}
/*
Get the Laplacian result in 8-bit image.
zero corresponds to gray level 128.
if no scale is provided, then the max value will be scaled to intensity 255
You must call computeLaplacian before calling this
*/
Mat convertDataRange(double scale = -1.0) {
if (scale < 0) {
double laplacianMin, laplacianMax;
// get min and max laplacian values
minMaxLoc(laplace, &laplacianMin, &laplacianMax);
// scale the laplacian to 127
scale = 127 / max(-laplacianMin, laplacianMax);
}
// produce gray-level image
Mat laplaceImage;
laplace.convertTo(laplaceImage, CV_8U, scale, 128);
return laplaceImage;
}
/*
Get a binary image of the zero-crossings
laplacian image should be CV_32F
negative values in black
positive values in white
*/
Mat getZeroCrossings(Mat laplace) {
// threshold at 0
Mat signImage;
threshold(laplace, signImage, 0, 255, THRESH_BINARY);
// convert the +/- image into CV_8U
Mat binary;
signImage.convertTo(binary, CV_8U);
// dilate the binary image of +/- regions
Mat dilated;
dilate(binary, dilated, Mat());
// return the zero-crossing contours
return dilated;
}
};
int main() {
Mat image = imread("lena.tif", IMREAD_GRAYSCALE);
// Compute Laplacian using myLaplacian class
myLaplacian laplacian;
laplacian.setKernelSize(7); // 7x7 laplacian
Mat laplace = laplacian.computeLaplacian(image);
Mat laplace_convertDataRange = laplacian.convertDataRange();
Mat zeroCrossing = laplacian.getZeroCrossings(laplace);
imwrite("laplace.bmp", laplace);
imwrite("laplace_convertDataRange.bmp", laplace_convertDataRange);
imwrite("zeroCrossing.bmp", zeroCrossing);
// Difference of Gaussians (DoG)
Mat gauss20, gauss22, dog, dog_zeroCrossing;
GaussianBlur(image, gauss20, Size(), 2.0);
GaussianBlur(image, gauss22, Size(), 2.2);
// compute a difference of gaussians
subtract(gauss20, gauss22, dog, Mat(), CV_32F);
// compute the zero-crossings of DoG
dog_zeroCrossing = laplacian.getZeroCrossings(dog);
imwrite("dog_zeroCrossing.bmp", dog_zeroCrossing);
}
'영상처리 > OpenCV' 카테고리의 다른 글
13. Backprojection & meanshift (0) | 2019.05.18 |
---|---|
12. histogram introduction (0) | 2019.05.12 |
10. Directional Filter(Sobel) (0) | 2019.04.27 |
09. Median filter (2) | 2019.04.24 |
08. Downsampling (4) | 2019.04.22 |
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- Low pass filter
- dilation
- gradient
- mean filter
- black top hat
- laplacian of gaussian
- Line Detection
- canny
- Sobel
- 캐니 엣지
- bilateral filter
- segmentation
- equalizing
- Filter
- pyrUp
- pyrDown
- 영상처리
- top hat
- canny operator
- high pass filter
- difference of gaussian
- median filter
- morphological operation
- adaptive thresholding
- erosion
- OpenCV
- upsampling
- hough transform
- morphology
- direction detection
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
글 보관함